Directed evolution of a biterminal bacterial display scaffold enhances the display of diverse peptides
Open Access
- 13 May 2008
- journal article
- research article
- Published by Oxford University Press (OUP) in Protein Engineering, Design and Selection
- Vol. 21 (7) , 435-442
- https://doi.org/10.1093/protein/gzn020
Abstract
Bacterial cell-surface display systems coupled with quantitative screening methods offer the potential to expand protein engineering capabilities. To more fully exploit this potential, a unique bacterial surface display scaffold was engineered to display peptides more efficiently from the surface exposed C- and N-termini of a circularly permuted outer membrane protein. Using directed evolution, efficient membrane localization of a circularly permuted OmpX (CPX) display scaffold was rescued, thereby improving the presentation of diverse passenger peptides on the cell surface. Random and targeted mutagenesis directed towards linkers joining the native N- and C-termini of OmpX coupled with screening by FACS yielded an enhanced CPX (eCPX) variant which localized to the outer membrane as efficiently as the non-permuted parent. Interestingly, enhancing substitutions coincided with a C-terminal motif conserved in outer membrane proteins. Surface localization of various passenger peptides and mini-proteins was expedited using eCPX relative to that achieved with the parent scaffold. The new variant also permitted simultaneous display and labeling of distinct peptides on structurally adjacent C- and N-termini, thus enabling display level normalization during library screening and the display of bidentate or dimeric peptides. Consequently, the evolved scaffold, eCPX, expands the range of applications for bacterial display. Finally, this approach provides a route to improve the performance of cell-surface display vectors for protein engineering and design.Keywords
This publication has 43 references indexed in Scilit:
- Protease specificity determination by using cellular libraries of peptide substrates (CLiPS)Proceedings of the National Academy of Sciences, 2006
- Bacterial display using circularly permuted outer membrane protein OmpX yields high affinity peptide ligandsProtein Science, 2006
- A generic system for the Escherichia coli cell‐surface display of lipolytic enzymesFEBS Letters, 2005
- Biogenesis of the Gram-negative bacterial outer membraneCurrent Opinion in Microbiology, 2004
- Selection of peptide entry motifs by bacterial surface displayBiochemical Journal, 2002
- Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinitiesBiochemistry, 1995
- Circular permutation of polypeptide chains: Implications for protein folding and stabilityProgress in Biophysics and Molecular Biology, 1995
- Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane proteinJournal of Molecular Biology, 1991
- Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion SurfaceScience, 1985
- Analysis of gene control signals by DNA fusion and cloning in Escherichia coliJournal of Molecular Biology, 1980