Computer-controlled apparatus for measuring complex elastic, dielectric, and piezoelectric constants of polymer films

Abstract
Principles and design details are described for a fully automatic system measuring frequency and temperature spectra of the complex elastic, dielectric, and piezoelectric constants of polymer films. A microcomputer is used to control all processes including wave generation, sampling, and calculations. A sinusoidal excitation wave is written onto a RAM, readout by an external clock, and applied to a sample via a D/A converter. The resulting signals related to force, deformation, charge, and voltage are simultaneously sampled using the same clock and are determined as complex quantities through Fourier transformation. Their ratios give corresponding complex response functions. A multifrequency signal consisting of eight sinusoidal waves with frequencies of common ratio 2 is used to obtain frequency spectra over two decades at a time. This system operates over a frequency range from 0.01 to 100 Hz for elastic and piezoelectric measurements and from 0.01 Hz to 10 kHz for dielectric measurements at temperatures from −160 to 250 °C with an accuracy of 0.1% in tan δ.

This publication has 2 references indexed in Scilit: