Abstract
A major goal in nuclear physics is to understand the stability, structure, and reactions of nuclei as a consequence of the interactions between individual nucleons. This colloquium describes one attempt to build a consistent picture of nuclear systems ranging in size from deuterons to neutron stars. The main ingredients are a nonrelativistic Hamiltonian containing two- and three-nucleon interactions, and correlated variational wave functions as approximate solutions of the many-body Schrödinger equation. A model that fits both two-body scattering data and nuclear masses will provide the best theoretical input for neutron star properties.