Endothelial-dependent Mechanisms Regulate Leukocyte Transmigration: A Process Involving the Proteasome and Disruption of the Vascular Endothelial–Cadherin Complex at Endothelial Cell-to-Cell Junctions
Open Access
- 18 August 1997
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 186 (4) , 517-527
- https://doi.org/10.1084/jem.186.4.517
Abstract
Although several adhesion molecules expressed on leukocytes (β1 and β2 integrins, platelet endothelial cell adhesion molecule 1 [PECAM-1], and CD47) and on endothelium (intercellular adhesion molecule 1, PECAM-1) have been implicated in leukocyte transendothelial migration, less is known about the role of endothelial lateral junctions during this process. We have shown previously (Read, M.A., A.S. Neish, F.W. Luscinskas, V.J. Palambella, T. Maniatis, and T. Collins. 1995. Immunity. 2:493–506) that inhibitors of the proteasome reduce lymphocyte and neutrophil adhesion and transmigration across TNF-α–activated human umbilical vein endothelial cell (EC) monolayers in an in vitro flow model. The current study examined EC lateral junction proteins, principally the vascular endothelial (VE)–cadherin complex and the effects of proteasome inhibitors (MG132 and lactacystin) on lateral junctions during leukocyte adhesion, to gain a better understanding of the role of EC junctions in leukocyte transmigration. Both biochemical and indirect immunofluorescence analyses of the adherens junction zone of EC monolayers revealed that neutrophil adhesion, not transmigration, induced disruption of the VE–cadherin complex and loss of its lateral junction localization. In contrast, PECAM-1, which is located at lateral junctions and is implicated in neutrophil transmigration, was not altered. These findings identify new and interrelated endothelial-dependent mechanisms for leukocyte transmigration that involve alterations in lateral junction structure and a proteasome-dependent event(s).Keywords
This publication has 42 references indexed in Scilit:
- From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesionPublished by Elsevier ,2002
- Cell Adhesion: The Molecular Basis of Tissue Architecture and MorphogenesisPublished by Elsevier ,1996
- Functional Properties of Human Vascular Endothelial Cadherin (7B4/Cadherin-5), an Endothelium-Specific CadherinArteriosclerosis, Thrombosis, and Vascular Biology, 1995
- The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin).The Journal of cell biology, 1995
- Monocyte rolling, arrest and spreading on IL-4-activated vascular endothelium under flow is mediated via sequential action of L-selectin, beta 1-integrins, and beta 2-integrins.The Journal of cell biology, 1994
- Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells.The Journal of cell biology, 1993
- The cytoplasmic domain of adherens‐type junctionsCell Motility, 1991
- Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines.Journal of Clinical Investigation, 1985
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970