Characterization of an Amino Acid Permease from the Endomycorrhizal Fungus Glomus mosseae
- 14 March 2008
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 147 (1) , 429-437
- https://doi.org/10.1104/pp.108.117820
Abstract
Arbuscular mycorrhizal (AM) fungi are capable of exploiting organic nitrogen sources, but the molecular mechanisms that control such an uptake are still unknown. Polymerase chain reaction-based approaches, bioinformatic tools, and a heterologous expression system have been used to characterize a sequence coding for an amino acid permease (GmosAAP1) from the AM fungus Glomus mosseae. The GmosAAP1 shows primary and secondary structures that are similar to those of other fungal amino acid permeases. Functional complementation and uptake experiments in a yeast mutant that was defective in the multiple amino acid uptake system demonstrated that GmosAAP1 is able to transport proline through a proton-coupled, pH- and energy-dependent process. A competitive test showed that GmosAAP1 binds nonpolar and hydrophobic amino acids, thus indicating a relatively specific substrate spectrum. GmosAAP1 mRNAs were detected in the extraradical fungal structures. Transcript abundance was increased upon exposure to organic nitrogen, in particular when supplied at 2 mm concentrations. These findings suggest that GmosAAP1 plays a role in the first steps of amino acid acquisition, allowing direct amino acid uptake from the soil and extending the molecular tools by which AM fungi exploit soil resources.Keywords
This publication has 68 references indexed in Scilit:
- Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory rolesPlant, Cell & Environment, 2006
- Enzymatic Evidence for the Key Role of Arginine in Nitrogen Translocation by Arbuscular Mycorrhizal FungiPlant Physiology, 2006
- Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseaeMycorrhiza, 2005
- Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporumMycorrhiza, 2004
- Organic and inorganic nitrogen nutrition of western red cedar, western hemlock and salal in mineral N-limited cedar–hemlock forestsOecologia, 2004
- Utilisation of organic nitrogen and phosphorus sources by mycorrhizal endophytes of Woollsia pungens (Cav.) F. Muell. (Epacridaceae)Mycorrhiza, 1999
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Root adaptation and nitrogen source acquisition in natural ecosystemsTree Physiology, 1996
- BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiaeBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1995
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Research, 1994