Matrix methods applied to acoustic waves in multilayers
- 1 November 1990
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
- Vol. 37 (6) , 485-490
- https://doi.org/10.1109/58.63103
Abstract
Matrix methods for analyzing the electroacoustic characteristics of anisotropic piezoelectric multilayers are described. The conceptual usefulness of the methods is demonstrated in a tutorial fashion by examples showing how formal statements of propagation, transduction, and boundary-value problems in complicated acoustic layered geometries such as those which occur in surface acoustic wave (SAW) devices, in multicomponent laminates, and in bulk-wave composite transducers are simplified. The formulation given reduces the electroacoustic equations to a set of first-order matrix differential equations, one for each layer, in the variables that must be continuous across interfaces. The solution to these equations is a transfer matrix that maps the variables from one layer face to the other. Interface boundary conditions for a planar multilayer are automatically satisfied by multiplying the individual transfer matrices in the appropriate order, thus reducing the problem to just having to impose boundary conditions appropriate to the remaining two surfaces. The computational advantages of the matrix method result from the fact that the problem rank is independent of the number of layers, and from the availability of personal computer software that makes interactive numerical experimentation with complex layered structures practical.<>Keywords
This publication has 4 references indexed in Scilit:
- Apodization of multilayer bulk-wave transducersIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1989
- Analysis of anisotropic multilayer bulk-acoustic-wave transducersElectronics Letters, 1989
- Systematic Design of Stacked-Crystal Filters by Microwave Network MethodsIEEE Transactions on Microwave Theory and Techniques, 1974
- Propagation of acoustic surface waves in multilayers: A matrix descriptionApplied Physics Letters, 1973