The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance
Top Cited Papers
- 8 November 2008
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 130 (48) , 16324-16329
- https://doi.org/10.1021/ja806493n
Abstract
A comparison of three samples of poly(3-hexylthiophene) having regioregularities of 86, 90, and 96% is used to elucidate the effect of regioregularity on polymer-fullerene-composite solar cell performance. It is observed that polymer samples with lower regioregularity are capable of generating fullerene composites that exhibit superior thermal stability. The enhanced thermal stability of the composites is attributed to a lower driving force for polymer crystallization in the less regioregular polymer samples, which is supported with two-dimensional grazing incidence X-ray scattering and differential scanning calorimetry measurements. Furthermore, it is demonstrated that all three polymer samples are capable of generating solar cells with equivalent peak efficiencies of similar to 4% in blends with [6,6]-phenyl-C-61-butyric acid methyl ester. While it may be non-intuitive that polymers with lower regioregularity can exhibit higher efficiencies, it is observed that the charge-carrier mobility of the three polymers is on the same order of magnitude (10(-4) cm(2) V-1 s(-1)) when measured from the space-charge-limited current, suggesting that highly regioregular and crystalline polythiophenes are not required in order to effectively transport charges in polymer solar cells. Overall, these results suggest a design principle for semicrystalline conjugated polymers in fullerene-composite solar cells in which crystallization-driven phase separation can be dramatically suppressed via the introduction of a controlled amount of disorder into the polymer backbone.This publication has 38 references indexed in Scilit:
- Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the PerformanceAdvanced Materials, 2008
- Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar CellsJournal of the American Chemical Society, 2007
- Polymer–Fullerene Composite Solar CellsAngewandte Chemie International Edition in English, 2007
- High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene BlendsAdvanced Materials, 2007
- Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiolsNature Materials, 2007
- Conjugated Polymer-Based Organic Solar CellsChemical Reviews, 2007
- Soluble Narrow Band Gap and Blue Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic and Electrochromic ApplicationsJournal of the American Chemical Society, 2006
- Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion EfficiencyAdvanced Materials, 2006
- High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blendsNature Materials, 2005
- Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network MorphologyAdvanced Functional Materials, 2005