Uptake of an Oviductal Antigen by the Hamster Zona Pellucida1

Abstract
Cytosol prepared from rat preovulatory ovarian follicles contained several specific substrates which were phosphorylated by [gamma 32P] ATP in the presence of 2 microM cyclic AMP (cAMP) or 780 nM of highly purified catalytic subunit. These substrates were identified as RII, the regulatory subunit of type II cAMP-dependent protein kinase, an Mr = 43,000 protein presumed to be actin, and four other proteins with Mr = 36,500-15,000. A marked decrease in phosphorylation of these proteins was observed within 6-48 h of human chorionic gonadotropin (hCG)-induced ovulation and luteinization in hormonally primed immature rats. The phosphorylation of these proteins was also low in cytosol of corpora lutea isolated on Days 2, 4, 9, 13 and 23 of pregnancy. The decrease in phosphorylation of RII was associated primarily with a decrease in substrate content as measured by photoaffinity labeling and silver staining techniques, and not to a marked increase in phosphoprotein phosphatase and adenosinetriphosphatase (ATPase) activities. Whereas the decreased phosphorylation of other proteins is also presumed to be related to a decrease in their cytosol content, the data do not exclude the possibility that luteal tissue contains a specific phosphoprotein phosphatase which is not present in granulosa or theca cells of preovulatory follicles. We conclude that luteinizing hormone (LH) or hCG, and thereby cAMP itself, induces the rapid loss of specific phosphoproteins which may be involved in regulating cAMP action in granulosa cells.