THE BOTTOM‐ICE MICROALGAL COMMUNITY FROM ANNUAL ICE IN THE INSHORE WATERS OF EAST ANTARCTICA1
- 1 December 1983
- journal article
- research article
- Published by Wiley in Journal of Phycology
- Vol. 19 (4) , 431-439
- https://doi.org/10.1111/j.0022-3646.1983.00431.x
Abstract
The structure, productivity and heterotrophic potential of an extensive microalgal community growing on the underside of sea ice near the Australian Antarctic Station of Casey, are described. Underwater observations made near the Australian Antarctic stations of Davis and Mawson are also reported. This community develops during September, is largely suspended from the bottom surface of annual sea ice and often extends into the underlying water column as conspicuous strands up to 15 cm long. The algal community structure in the strands is dominated by an unidentified tube diatom belonging to the Amphipleura/Berkeleya group and chains of a species of Entomoneis cf. Amphiprora paludosa var. hyperborea (Grunow) Cleve. Unlike previously described bottom ice environments, a brash ice layer under the hard sea ice is absent. Living cells, predominantly Nitzschia frigida Grunow, also occur in microbrine channels in the bottom 3 cm of the ice. Maximal primary production rates of 81 μg C · L‐1· h‐1 occurred during November, then began declining near the end of December. Minimal rates (2.8 μg C · L‐1· h‐1) were reached in mid‐January and coincided with changes in the physical structure of the sea ice and in the stability of the water column. An abundant epibacterial community associated with the microalgal strands assimilated 3H‐labelled amino acids suggesting significant heterotrophic recycling of dissolved organic matter. Turnover times of assimilated amino acids in the bottom ice community averaged 55 h during November while negligible turnover of these substrates occurred in the water column 1.5 m below the ice. These bottom ice communities have higher primary productivity than typical brash ice communities; they are also accessible to marine herbivores and so may be more important to the Antarctic marine food chain than previously supposed.Keywords
This publication has 24 references indexed in Scilit:
- An Improved Chamber for in situ Measurement of Primary Productivity by Sea Ice AlgaeCanadian Journal of Fisheries and Aquatic Sciences, 1982
- REMOVAL OF ORGANIC AND INORGANIC MATTER FROM ANTARCTIC LAKES BY AERIAL ESCAPE OF BLUEGREEN ALGAL MATS1Journal of Phycology, 1982
- Differentiation Between Auto- and Heterotrophic Activity: Problems in the Use of Size Fractionation and AntibioticsBotanica Marina, 1981
- Primary Productivity of the Benthic Microalgae in the Chukchi Sea near Barrow, AlaskaJournal of the Fisheries Research Board of Canada, 1974
- High-Latitude PhytoplanktonAnnual Review of Ecology and Systematics, 1971
- Anchor Ice Formation in McMurdo Sound, Antarctica, and Its Biological EffectsScience, 1969
- Productivity of Microalgae in Antarctic Sea IceScience, 1965
- DYNAMICS OF A PHYTOPLANKTON COMMUNITY IN AN ICE‐COVERED LAKE1Limnology and Oceanography, 1964
- Microbiology of Antarctic Sea-ice: Diatoms of Antarctic Sea-ice as Agents of Primary ProductionNature, 1963
- Microbiology of Antarctic Sea-ice: Microalgae and Antarctic Sea-iceNature, 1963