The ability of debris, heavily freighted with coarse clastic materials, to flow on gentle slopes
- 1 April 1976
- journal article
- Published by Wiley in Sedimentology
- Vol. 23 (2) , 213-234
- https://doi.org/10.1111/j.1365-3091.1976.tb00047.x
Abstract
Observations of many debris‐flow deposits on gently‐sloping alluvial fans have disclosed that debris commonly is heavily loaded with coarse clastic material and contains large isolated blocks. The paper describes how debris charged with coarse granular material can transport large blocks, yet flow on gentle slopes.Experimental results of mixing sand‐sized particles with a slurry of clay plus water indicate that 45–55 vol. % of a single size, and up to 64% of two selected sizes, can be added before interlocking occurs. Theoretical analysis of multi‐size classes suggest that 89 to more than 95 vol. % debris can be clastic materials without significant particle interlocking.The clay fraction, even if minor, plays a critical role in determining strength properties of debris. The mixture of clay plus water provides a cohesive slurry that supports fine‐grained particles within the debris, as well as reduces the effective normal stresses between the particles. The increased unit weight of the clay plus water plus fine‐grained particles allows the support of coarser grained particles. The pyramiding upon the clay‐water slurry continues until the entire debris mass is supported in a virtually frictionless position because of the reduced effective normal stress and the lack of particle interlocking.Thus, the ability of debris flows to support large blocks can be understood in terms of the high unit weight of the displaced debris plus the strength of the fluid phase; that is, the blocks float in the debris as a result of a small density difference between the blocks and the debris, plus the cohesive strength of the clay‐water slurry.Also, the ability of coarse clastic debris to flow on gentle slopes probably is a result of poor sorting of debris‐flow materials which contain minor amounts of clay. The poor sorting allows the debris to have a high density yet have essentially no interlocking of clasts. The high density of the debris reduces effective normal stresses between clasts, thereby reducing apparent friction of the mixture.Keywords
This publication has 14 references indexed in Scilit:
- Landslides in the Mgeta Area, Western Uluguru Mountains, TanzaniaGeografiska Annaler: Series A, Physical Geography, 1972
- OBSERVATION OF ALPINE MUDFLOWS IN THE TENMILE RANGE, CENTRAL COLORADOGSA Bulletin, 1966
- The stress-dilatancy relation for static equilibrium of an assembly of particles in contactProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962
- THE STRUCTURE OF SEDIMENTARY DEPOSITS OF BRAIDED RIVERSSedimentology, 1962
- Recent Lahars from Mount St. Helens, WashingtonGSA Bulletin, 1962
- Mechanical Packing of Spherical ParticlesJournal of the American Ceramic Society, 1961
- MUDFLOW OF 1941 AT WRIGHTWOOD, SOUTHERN CALIFORNIAGSA Bulletin, 1953
- Flood gravel of San Gabriel Canyon, CaliforniaGSA Bulletin, 1940
- PARTICLE PACKING AND PARTICLE SHAPE*Journal of the American Ceramic Society, 1937
- The Geologic Rôle of DilatancyThe Journal of Geology, 1925