Abstract
Cytokines, hormonelike proteins, produced by stimulated cells and tissues, were found to protect mice against lethal hematopoietic failure caused by ionizing radiation. Radioprotection was achieved by pretreatment with interleukin-1 (IL-1), tumor necrosis factor (TNF), IL-12, or stem cell factor (SCF) at 18 to 24 hr before irradiation. Pretreatment with antibodies to these cytokines rendered the mice more susceptible to radiation lethality, indicating that these cytokines play a role in innate resistance to radiation. In contrast, treatment with tumor growth factor beta (TGF-beta), a cytokine that inhibits cycling of primitive hematopoietic progenitors, sensitized mice to radiation lethality. The schedule of IL-1 administration was critical to its radioprotective effect. Evidence was obtained that this may be based on the induction of additional cytokines by IL-1. The radioprotective effects of cytokines can be based on induction of cycling of primitive progenitor cells (IL-1, SCF), prevention of apoptosis (SCF), and induction of scavenging proteins and enzymes (IL-1, TNF) that reduce oxidative damage. In contrast, radiosensitizing effects may be due to inhibition of progenitor cycling (TGF-beta) or enhanced progenitor cell apoptosis (TGF-beta). Thus, the insights gained from such studies at the whole-animal level promise a better understanding of the membrane and intracellular events associated with radiation damage and repair of such damage.