Frequency effects in profile analysis and detecting complex spectral changes

Abstract
Seven experiments on the detectability of intensity changes in complex multitonal acoustic spectra are reported. Two general questions organize the experimental efforts. The first question is how the detectability of a change in a flat (equal energy) spectrum depends on the frequency region where a single intensive change is made. The answer is that frequency region plays a relatively minor role. Frequency changes in the midregion of the spectrum are the easiest to hear, but thresholds increase by only about 5 dB over the range from 200 to 5000 Hz. For all frequencies, the psychometric function is of the form d'' = k (.DELTA.p), where k is a constant and .DELTA.p is the change in pressure. The second question is how can we predict the detectability of complex changes over the entire frequency range from the detectability of change at each separate region. Thresholds for detecting a change from a flat spectrum to a spectrum whose amplitude varies in sinusoidal ("rippled") fashion over logarithmic frequency are measured at different frequencies of ripple. The thresholds are found to be independent of ripple frequency and are 7 dB higher than predicted on the basis of an optimum combination rule.

This publication has 4 references indexed in Scilit: