Induction of cytosolic NADPH-diaphorase/nitric oxide synthase in reactive microglia/macrophages after quinolinic acid lesions in the rat striatum: an electron and light microscopical study
- 1 January 1996
- journal article
- Published by Springer Nature in Histochemistry and Cell Biology
- Vol. 105 (1) , 81-89
- https://doi.org/10.1007/bf01450881
Abstract
Induction of nitric oxide synthase and increased production of nitric oxide in microglia may play a crucial role in neuronal damage and neurodegenerative disorders. In the present study we have used light and electron microscopical NADPH-diaphorase histochemistry as the visualization procedure for nitric oxide synthase to investigate the time-course and subcellular patterns of NADPH-diaphorase expression in microglia/macrophages of quinolinic acid-lesioned rat striatum. For light microscopy, NADPH-diaphorase histochemistry sections were stained with nitroblue tetrazolium, while for ultrastructural analysis the tetrazolium salt 2-(2′-benzothiazolyl)-5-styryl-3(4′-phthalhydrazidyl) tetrazolium chloride (BSPT) was applied. Light microscopical inspection revealed a progressively increasing number of positive cells with increasing intensity of NADPH-diaphorase staining in microglia/macrophages from day 1 after quinolinic acid injection onward. Electron microscopical examination revealed a membrane bound NADPH-diaphorase in quiescent microglia as well as in activated microglia/macrophages through all stages of the lesion studied. Predominantly membranes of the nuclear envelope and the endoplasmic reticulum were labeled with BSPT-formazan, while in advanced stages selective membrane portions of mitochondria, Golgi apparatus and plasmalemma were also stained. From day 5 onward after lesion induction, a very distinctive type of NADPH-diaphorase was observed, forming accumulations of electron-dense grains that were distributed differentially throughout cytoplasmic areas and phagocytic vacuoles. Dynamics of expression, unique cytosolic localization and occurrence exclusively in activated microglia/macrophages suggest that this particular NADPH-diaphorase activity probably reflects the inducible isoform of nitric oxide synthase, whereas the membrane-bound precipitate may represent the neuronal and/or the endothelial isoform of the enzyme.Keywords
This publication has 51 references indexed in Scilit:
- Localization of NADPH-diaphorase/nitric oxide synthase in the rat retina: an electron microscopic studyBrain Research, 1995
- Fixation conditions affect the intensity but not the pattern of NADPH-diaphorase staining as a marker for neuronal nitric oxide synthase in rat olfactory bulb.Journal of Histochemistry & Cytochemistry, 1994
- Endothelial NOS and the Blockade of LTP by NOS Inhibitors in Mice Lacking Neuronal NOSScience, 1994
- Involvement of nitric oxide synthase in antiproliferative activity of macrophages: Induction of the enzyme requires two different kinds of signal acting synergisticallyInternational Journal of Immunopharmacology, 1994
- Inducible L-Arginine-Dependent Nitric Oxide Synthase Activity in Bovine Bone Marrow-Derived MacrophagesBiochemical and Biophysical Research Communications, 1994
- Nitric Oxide Synthases in Neuronal Cells, Macrophages and Endothelium Are NADPH Diaphorases, but Represent Only a Fraction of Total Cellular NADPH Diaphorase ActivityBiochemical and Biophysical Research Communications, 1993
- Synthesis of nitric oxide in CNS glial cellsTrends in Neurosciences, 1993
- Nitric oxide synthase in rat brain is predominantly located at neuronal endoplasmic reticulum: an electron microscopic demonstration of NADPH-diaphorase activityNeuroscience Letters, 1992
- Different receptors mediate stimulation of nitric oxide-dependent cyclic GMP formation in neurons and astrocytes in cultureBiochemical and Biophysical Research Communications, 1992
- Lectin binding by resting and reactive microgliaJournal of Neurocytology, 1987