Optical properties of poly-HCN and their astronomical applications
- 1 March 1994
- journal article
- research article
- Published by Canadian Science Publishing in Canadian Journal of Chemistry
- Vol. 72 (3) , 678-694
- https://doi.org/10.1139/v94-093
Abstract
Matthews (1992) has proposed that HCN "polymer" is ubiquitous in the solar system. We apply vacuum deposition and spectroscopic techniques previously used on synthetic organic heteropolymers (tholins), kerogens, and meteoritic organic residues to the measurement of the optical constants of poly-HCN in the wavelength range 0.05–40 µm. These measurements allow quantitative comparison with spectrophotometry of organic-rich bodies in the outer solar system. In a specific test of Matthews' hypothesis, poly-HCN fails to match the optical constants of the haze of the Saturnian moon, Titan, in the visible and near-infrared, derived from astronomical observations and standard models of the Titan atmosphere. In contrast, a tholin produced from a simulated Titan atmosphere matches within the probable errors. Poly-HCN is much more N-rich than Titan tholin.Keywords
This publication has 0 references indexed in Scilit: