Megarad and scientific CIDs

Abstract
Nine imagers that exploit distinctive CID properties and incorporate on-chip amplifier configurations (including preamplifier/pixel) were developed for use in automation, nuclear and scientific applications. TV compatible (11 mm) formats of 768H X 575V (European) and 755H X 484V (domestic-RS170) were fabricated for radiation- hardened product cameras. Operating CIDs provided excellent signal-to-noise at radiation levels of 106 rads/hr, and accumulated dose beyond 106 rads in silicon (60Co source). Large format imagers featuring random pixel and subarray addressability, were created for spectroscopy and other scientific applications. They possess a 27 X 27 micrometers 2 pixel in 1024H X 1024V, 1024H X 256V, and 512H X 512V formats. Pixels and subarrays (even overlapping subarrays) can be read out destructively or non-destructively. The above features can be combined with 2D on- CID pixel binning because CID binning preserves the spatial fidelity of the pixel charge. Two 1024 linear-type imagers were fabricated with a preamplifier-per-pixel structure and a 27 X 150 micrometers 2 large capacity photo-site. One device features on-chip large signal differencing capability between successive exposures. Two 512H X 512V (20 X 20 micrometers 2 pixel) format imagers were created for UV photon-counting applications. The imagers provide high local count rates through video-rate random subarray addressability and subarray charge injection.

This publication has 0 references indexed in Scilit: