Abstract
A deterministic capacity expansion model for two facility types with a finite number of discrete time periods is described. The model generalizes previous work by allowing for capacity disposals, in addition to capacity expansions and conversions from one facility type to the other. Furthermore, shortages of capacity are allowed and upper bounds on both shortages and idle capacities can be imposed. The demand increments for additional capacity of any type in any time period can be negative. All cost functions are assumed to be piecewise, concave and nondecreasing away from zero. The model is formulated as a shortest path problem for an acyclic network, and an efficient search procedure is developed to determine the costs associated with the links of this network.