Proteolytic Processing of Pro-opiomelanocortin Occurs in Acidifying Secretory Granules of AtT-20 Cells

Abstract
Using antibodies specific for pro-opiomelanocortin (POMC), amidated joining peptide (JP), and the prohormone convertase PC1, we showed immunocytochemically that PC1 in a corticotrophic tumor cell line, AtT-20, was co-localized either with POMC or with amidated JP in secretory granules, and also confirmed that POMC was cleaved mainly in secretory granules. Analysis using DAMP (3- [2,4-dinitroanilino]-3'-amino- N-methyldipropylamine) as the pH probe suggested a correlation between POMC processing and acidic pH in the secretory granules. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-AT-Pase, completely inhibited POMC processing and caused constitutive secretion of the unprocessed precursor. By contrast, chloroquine, a weak base that is known to neutralize acidic organelles, was unable to inhibit POMC processing. Electron microscopic analysis revealed that, in AtT-20 cells treated with bafilomycin A1, the trans-Golgi cisternae were dilated and few secretory granules were present in the cytoplasm. These observations suggest that acidic pH provides a favorable environment for proteolytic processing of POMC by PC1 but is not required, and that integrity of the trans-Golgi network and sorting of POMC into secretory granules are important for POMC processing. (J Histochem Cytochem 45:425–436, 1997)