Abstract
The breakdown of the Mott insulator is studied when the dissipative tunneling into the environment is introduced to the system. By exactly solving the one-dimensional asymmetric Hubbard model, we show how such a breakdown of the Mott insulator occurs. As the effect of the tunneling is increased, the Hubbard gap is monotonically decreased and finally disappears, resulting in the insulator-metal transition. We discuss the origin of this quantum phase transition in comparison with other non-Hermitian systems recently studied.

This publication has 0 references indexed in Scilit: