Relationship between Photosynthetic Electron Transport and Stromal Enzyme Activity in Pea Leaves
- 1 October 1990
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 94 (2) , 545-553
- https://doi.org/10.1104/pp.94.2.545
Abstract
The response of the quantum efficiencies of photosystem (PS) II and PSI measured in vivo simultaneously with estimations of the activities and activation states of NADP-malate dehydrogenase, chloroplast fructose-1,6-bisphosphatase, and ribulose-1,5-bisphosphate carboxylase were used to study the relationship between electron transport and carbon metabolism. The effects of varying irradiance and CO2 partial pressure on the relationship between the quantum efficiences of PSI and II, and the activity of these enzymes shows that the interrelationships vary according to the limitations placed on the system. The relationship between the quantum efficiencies of PSII and PSI was linear in most situations. In response to increasing irradiance, the activity of all three enzymes increased. In the case of NADP-malate dehydrogenase this increase was well correlated with the estimated flux of electrons thorugh PSI and PSII. The other two enzymes showed a more complex relationship with the estimated flux of electrons through both photosystems. These relationships are consistent with the known interactions between these stromal enzymes and the thylakoids. The response to varying CO2 partial pressure is more complex. The efficiencies of PSI and II declined with decreasing CO2 partial pressure and the activity of each enzyme varied uniquely. However, there are clear correlations between the activities of the enzymes and the flux of electrons through the photosystems. In contrast to the data obtained under conditions of varying irradiance, there is clear evidence of photsynthetic control of electron transport when the CO2 concentration is varied.This publication has 20 references indexed in Scilit:
- Relationship between the Quantum Efficiencies of Photosystems I and II in Pea LeavesPlant Physiology, 1989
- Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplastsArchives of Biochemistry and Biophysics, 1989
- Effects of Irradiance and Methyl Viologen Treatment on ATP, ADP, and Activation of Ribulose Bisphosphate Carboxylase in Spinach LeavesPlant Physiology, 1988
- Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity by the Activase System in Lysed Spinach ChloroplastsPlant Physiology, 1988
- Involvement of Stromal ATP in the Light Activation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Intact Isolated ChloroplastsPlant Physiology, 1988
- Species Variation in the Predawn Inhibition of Ribulose-1,5-Bisphosphate Carboxylase/OxygenasePlant Physiology, 1986
- Light and CO2 Response of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activation in Arabidopsis LeavesPlant Physiology, 1986
- Regulation of stromal sedoheptulose 1,7-bisphosphatase activity by pH and Mg2+ concentration.Journal of Biological Chemistry, 1984
- Photosynthesis and Activation of Ribulose Bisphosphate Carboxylase in Wheat SeedlingsPlant Physiology, 1983
- Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlingsProceedings of the National Academy of Sciences, 1981