Abstract
Several definitions of universal optimality of experimental designs are found in the Literature; we discuss the interrelations of these definitions using a recent characterization due to Friedland of convex functions of matrices. An easily checked criterion is given for a design to satisfy the main definition of universal optimality; this criterion says that a certain set of linear functions of the eigenvalues of the information matrix is maximized by the information matrix of a design if and only if that design is universally optimal. Examples are given; in particular we show that any universally optimal design is (M, S)‐optimal in the sense of K. Shah.

This publication has 9 references indexed in Scilit: