Internalization of caveolin-1 scaffolding domain facilitated by Antennapedia homeodomain attenuates PAF-induced increase in microvessel permeability
Open Access
- 1 January 2004
- journal article
- Published by American Physiological Society in American Journal of Physiology-Heart and Circulatory Physiology
- Vol. 286 (1) , H195-H201
- https://doi.org/10.1152/ajpheart.00667.2003
Abstract
We demonstrated previously that inhibition of endothelial nitric oxide synthase (NOS), using pharmacological inhibitors, attenuated the ionomycin- and ATP-induced increases in microvessel permeability ( Am J Physiol Heart Circ Physiol 272: H176–H185, 1997). Recently, the scaffolding domain of caveolin-1 (CAV) has been implicated as a negative regulator of endothelial NOS (eNOS). To examine the role of CAV-eNOS interaction in regulation of permeability in intact microvessels, the effect of internalized CAV on the platelet-activating factor (PAF)-induced permeability increase was investigated in rat mesenteric venular microvessels. Internalization of CAV was achieved by perfusion of individual vessels using a fusion peptide of CAV with Antennapedia homeodomain (AP-CAV) and visualized by fluorescence imaging and electron microscopy. Changes in microvessel permeability were evaluated by measuring hydraulic conductivity ( L p) in individually perfused microvessels. We found that the PAF (10 nM)-induced L p increase was significantly attenuated from 6.0 ± 0.9 ( n = 7) to 2.0 ± 0.3 ( n = 5) times control after microvessels were perfused with 10 μM AP-CAV for 2 h. The magnitude of this reduction is comparable with that of the inhibitory effect of N ω-monomethyl-l-arginine on the PAF-induced L p increase. In contrast, perfusion with 10 μM AP alone for 2 h modified neither basal L p nor the vessel response to PAF. These results indicate that CAV plays an important role in regulation of microvessel permeability. The inhibitory action of CAV on permeability increase might be attributed to its direct inactivation of eNOS. In addition, this study established a method for studying protein-protein interaction-induced functional changes in intact microvessels and demonstrated AP as an efficient vector for translocation of peptide across the cell membrane in vivo.Keywords
This publication has 29 references indexed in Scilit:
- In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammationNature Medicine, 2000
- Stimulation of NO Production and of eNOS Phosphorylation in the Microcirculation in VivoMicrovascular Research, 2000
- Interaction between Caveolin-1 and the Reductase Domain of Endothelial Nitric-oxide SynthaseJournal of Biological Chemistry, 1998
- cGMP modulates basal and activated microvessel permeability independently of [Ca2+]iAmerican Journal of Physiology-Heart and Circulatory Physiology, 1998
- Dissecting the Interaction between Nitric Oxide Synthase (NOS) and CaveolinJournal of Biological Chemistry, 1997
- Direct Interaction of Endothelial Nitric-oxide Synthase and Caveolin-1 Inhibits Synthase ActivityJournal of Biological Chemistry, 1997
- Endothelial Nitric Oxide Synthase Is Regulated by Tyrosine Phosphorylation and Interacts with Caveolin-1Journal of Biological Chemistry, 1996
- Endothelial Nitric Oxide Synthase Targeting to CaveolaeJournal of Biological Chemistry, 1996
- Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independentJournal of Biological Chemistry, 1996
- The measurement of permeability in single rat venules using the red cell microperfusion techniqueExperimental Physiology, 1995