Dependence of Gas-Phase Abundances in the Interstellar Medium on Column Density

Abstract
Sightlines through high- and intermediate-velocity clouds allow measurements of ionic gas phase abundances, A, at very low values of HI column density, N(HI). Present observations cover over 4 orders of magnitude in N(HI). Remarkably, for several ions we find that the A vs N(HI) relation is the same at high and low column density and that the abundances have a relatively low dispersion (factors of 2-3) at any particular N(HI). Halo gas tends to have slightly higher values of A than disk gas at the same N(HI), suggesting that part of the dispersion may be attributed to the environment. We note that the dispersion is largest for NaI; using NaI as a predictor of N(HI) can lead to large errors. Important implications of the low dispersions regarding the physical nature of the ISM are: (a) because of clumping, over sufficiently long pathlengths N(HI) is a reasonable measure of the_local_ density of_most_ of the H atoms along the sight line; (b) the destruction of grains does not mainly take place in catastrophic events such as strong shocks, but is a continuous function of the mean density; (c) the cycling of the ions becoming attached to grains and being detached must be rapid, and the two rates must be roughly equal under a wide variety of conditions; (d) in gas that has a low average density the attachment should occur within denser concentrations
All Related Versions