Abstract
Model evaluation is one of the most important aspects of structural equation modeling (SEM). Many model fit indices have been developed. It is not an exaggeration to say that nearly every publication using the SEM methodology has reported at least one fit index. Most fit indices are defined through test statistics. Studies and interpretation of fit indices commonly assume that the test statistics follow either a central chi-square distribution or a noncentral chi-square distribution. Because few statistics in practice follow a chi-square distribution, we study properties of the commonly used fit indices when dropping the chi-square distribution assumptions. The study identifies two sensible statistics for evaluating fit indices involving degrees of freedom. We also propose linearly approximating the distribution of a fit index/statistic by a known distribution or the distribution of the same fit index/statistic under a set of different conditions. The conditions include the sample size, the distribution o...

This publication has 61 references indexed in Scilit: