Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade
Preprint
- 8 June 2005
Abstract
We develop a new 3+1 dimensional Monte Carlo cascade solving the kinetic on-shell Boltzmann equations for partons including the inelastic gg <-> ggg pQCD processes. The back reaction channel is treated -- for the first time -- fully consistently within this scheme. An extended stochastic method is used to solve the collision integral. The frame dependence and convergency are studied for a fixed tube with thermal initial conditions. The detailed numerical analysis shows that the stochastic method is fully covariant and that convergency is achieved more efficiently than within a standard geometrical formulation of the collision term, especially for high gluon interaction rates. The cascade is then applied to simulate parton evolution and to investigate thermalization of gluons for a central Au+Au collision at RHIC energy. For this study the initial conditions are assumed to be generated by independent minijets with p_T > p_0=2 GeV. With that choice it is demonstrated that overall kinetic equilibration is driven mainly by the inelastic processes and is achieved on a scale of 1 fm/c. The further evolution of the expanding gluonic matter in the central region then shows almost an ideal hydrodynamical behavior. In addition, full chemical equilibration of the gluons follows on a longer timescale of about 3 fm/c.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: