Ecto-ATPase activity on the surface of Trypanosoma cruzi and its possible role in the parasite?host cell interaction

Abstract
This study describes the possible role of Mg2+-dependent ecto-ATPase activity on the Trypanosoma cruzi–host cell interaction. Mg2+-dependent ecto-ATPase activity is observed on the cell body and flagellar membranes of the parasite and is about 20 times greater in trypomastigotes, as compared with epimastigotes. Suramin (a competitive antagonist of P2 receptors) and the impermeant agent 4,4′-diisothiocyanostylbene 2′,2′-disulfonic acid (DIDS), both inhibitors of ecto-ATPases, strongly inhibited ATPase activity and the adhesion and internalization of both evolutive forms by mouse resident macrophages. Suramin inhibited the growth of epimastigotes, suggesting a direct participation of ecto-ATPase activity in this process. To overcome the presence of suramin in the culture medium during the time of growth, Mg2+ ecto-ATPase activity was enhanced 4-fold, as compared with control parasites. The over-expression in enzyme activity was followed by a dramatic increase in the adhesion of epimastigotes to resident macrophages above the level observed for non-treated parasites.