Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms
- 1 July 2007
- journal article
- Published by SAGE Publications in Medical Decision Making
- Vol. 27 (4) , 448-470
- https://doi.org/10.1177/0272989x07302555
Abstract
Partial expected value of perfect information (EVPI) calculations can quantify the value of learning about particular subsets of uncertain parameters in decision models. Published case studies have used different computational approaches. This article examines the computation of partial EVPI estimates via Monte Carlo sampling algorithms. The mathematical definition shows 2 nested expectations, which must be evaluated separately because of the need to compute a maximum between them. A generalized Monte Carlo sampling algorithm uses nested simulation with an outer loop to sample parameters of interest and, conditional upon these, an inner loop to sample remaining uncertain parameters. Alternative computation methods and shortcut algorithms are discussed and mathematical conditions for their use considered. Maxima of Monte Carlo estimates of expectations are biased upward, and the authors show that the use of small samples results in biased EVPI estimates. Three case studies illustrate 1) the bias due to maximization and also the inaccuracy of shortcut algorithms 2) when correlated variables are present and 3) when there is nonlinearity in net benefit functions. If relatively small correlation or nonlinearity is present, then the shortcut algorithm can be substantially inaccurate. Empirical investigation of the numbers of Monte Carlo samples suggests that fewer samples on the outer level and more on the inner level could be efficient and that relatively small numbers of samples can sometimes be used. Several remaining areas for methodological development are set out. A wider application of partial EVPI is recommended both for greater understanding of decision uncertainty and for analyzing research priorities.Keywords
This publication has 27 references indexed in Scilit:
- Commentary on Coyle et al., "The assessment of the economic return from controlled clinical trials"The European Journal of Health Economics, 2003
- The assessment of the economic return from controlled clinical trialsThe European Journal of Health Economics, 2003
- ErratumMedical Decision Making, 2003
- Addressing uncertainty in medical cost–effectiveness analysisJournal of Health Economics, 2001
- BAYESIAN VALUE-OF-INFORMATION ANALYSISInternational Journal of Technology Assessment in Health Care, 2001
- The Expected Value of Information and the Probability of SurpriseRisk Analysis, 1999
- Sensitivity Analysis and the Expected Value of Perfect InformationMedical Decision Making, 1998
- An economic approach to clinical trial design and research priority-settingHealth Economics, 1996
- Costs, effects and C/E‐ratios alongside a clinical trialHealth Economics, 1994
- Focusing Technology Assessment Using Medical Decision TheoryMedical Decision Making, 1988