Defect Reduction in Mocvd Grown Si/GaAs

Abstract
The effectiveness of thermal annealing and strained layer superlattices (SLS's) in defect reduction in Si/GaAs structures was studied. The GaAs layers were grown on (100) Si substrates by low pressure MOCVD. They were evaluated by TEM, HREM, EBIC and PL. As-grown layers contained dislocation densities in the 108-109 cm−2 range, depending on the layer thickness. Post-growth and in situ annealing were performed on a wide variety of these structures. TEM examination showed that in situ annealing was more effective as it resulted in confining a large portion of the threading dislocations to the interface region. Furthermore, the interaction of threading dislocations to form closed loops was evident. Additionally, the effect of GaAs/GaInAs and GaInAs/GaAsP SLS's on dislocation bending was investigated. The former SLS, although not lattice matched to GaAs, proved more effective.