Observation of chaotic instability in the active mode locking of a semiconductor laser

Abstract
We examine experimentally the consequence of frequency detuning an actively mode-locked external-cavity semiconductor laser from resonance. We observe a transition of the laser system from a periodic oscillation to a nonperiodic state with broadened spectral tones. By estimating the fractal dimension of the corresponding phase-space attractors, we show the presence of low-dimensional chaos. The route to chaos is a well-defined regime of three-frequency quasi-periodicity preceded by a two-frequency quasi-periodicity.