Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome
Top Cited Papers
- 29 March 2007
- journal article
- research article
- Published by Springer Nature in Nature
- Vol. 446 (7135) , 572-576
- https://doi.org/10.1038/nature05632
Abstract
The nucleosome is the fundamental building block of eukaryotic chromosomes. Access to genetic information encoded in chromosomes is dependent on the position of nucleosomes along the DNA. Alternative locations just a few nucleotides apart can have profound effects on gene expression1. Yet the nucleosomal context in which chromosomal and gene regulatory elements reside remains ill-defined on a genomic scale. Here we sequence the DNA of 322,000 individual Saccharomyces cerevisiae nucleosomes, containing the histone variant H2A.Z, to provide a comprehensive map of H2A.Z nucleosomes in functionally important regions. With a median 4-base-pair resolution, we identify new and established signatures of nucleosome positioning. A single predominant rotational setting and multiple translational settings are evident. Chromosomal elements, ranging from telomeres to centromeres and transcriptional units, are found to possess characteristic nucleosomal architecture that may be important for their function. Promoter regulatory elements, including transcription factor binding sites and transcriptional start sites, show topological relationships with nucleosomes, such that transcription factor binding sites tend to be rotationally exposed on the nucleosome surface near its border. Transcriptional start sites tended to reside about one helical turn inside the nucleosome border. These findings reveal an intimate relationship between chromatin architecture and the underlying DNA sequence it regulates.Keywords
This publication has 30 references indexed in Scilit:
- A genomic code for nucleosome positioningNature, 2006
- Genome-wide identification of replication origins in yeast by comparative genomicsGenes & Development, 2006
- A high-resolution map of transcription in the yeast genomeProceedings of the National Academy of Sciences, 2006
- Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome PositioningPLoS Biology, 2005
- Genome-wide Map of Nucleosome Acetylation and Methylation in YeastPublished by Elsevier ,2005
- Evidence for nucleosome depletion at active regulatory regions genome-wideNature Genetics, 2004
- Sequencing and comparison of yeast species to identify genes and regulatory elementsNature, 2003
- The structure of DNA in the nucleosome coreNature, 2003
- Transcriptional Regulatory Networks in Saccharomyces cerevisiaeScience, 2002
- Sequence periodicities in chicken nucleosome core DNAJournal of Molecular Biology, 1986