Localization of the Kinesin-like Protein Xklp2 to Spindle Poles Requires a Leucine Zipper, a Microtubule-associated Protein, and Dynein
Open Access
- 2 November 1998
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 143 (3) , 673-685
- https://doi.org/10.1083/jcb.143.3.673
Abstract
Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.Keywords
This publication has 58 references indexed in Scilit:
- A Complex of NuMA and Cytoplasmic Dynein Is Essential for Mitotic Spindle AssemblyCell, 1996
- Opposing motor activities are required for the organization of the mammalian mitotic spindle pole.The Journal of cell biology, 1996
- Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extractsNature, 1996
- Targeting of Motor ProteinsScience, 1996
- A bipolar kinesinNature, 1996
- Xklp2, a Novel Xenopus Centrosomal Kinesin-like Protein Required for Centrosome Separation during MitosisCell, 1996
- Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivoPublished by Elsevier ,1995
- Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein.The Journal of cell biology, 1995
- Predicting Coiled Coils from Protein SequencesScience, 1991
- Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein.The Journal of cell biology, 1991