Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing
Open Access
- 21 January 2009
- journal article
- research article
- Published by Springer Nature in BMC Genomics
- Vol. 10 (1) , 1-18
- https://doi.org/10.1186/1471-2164-10-37
Abstract
Background: Short-read high-throughput DNA sequencing technologies provide new tools to answer biological questions. However, high cost and low throughput limit their widespread use, particularly in organisms with smaller genomes such as S. cerevisiae. Although ChIP-Seq in mammalian cell lines is replacing array-based ChIP-chip as the standard for transcription factor binding studies, ChIP-Seq in yeast is still underutilized compared to ChIP-chip. We developed a multiplex barcoding system that allows simultaneous sequencing and analysis of multiple samples using Illumina's platform. We applied this method to analyze the chromosomal distributions of three yeast DNA binding proteins (Ste12, Cse4 and RNA PolII) and a reference sample (input DNA) in a single experiment and demonstrate its utility for rapid and accurate results at reduced costs. Results: We developed a barcoding ChIP-Seq method for the concurrent analysis of transcription factor binding sites in yeast. Our multiplex strategy generated high quality data that was indistinguishable from data obtained with non-barcoded libraries. None of the barcoded adapters induced differences relative to a non-barcoded adapter when applied to the same DNA sample. We used this method to map the binding sites for Cse4, Ste12 and Pol II throughout the yeast genome and we found 148 binding targets for Cse4, 823 targets for Ste12 and 2508 targets for PolII. Cse4 was strongly bound to all yeast centromeres as expected and the remaining non-centromeric targets correspond to highly expressed genes in rich media. The presence of Cse4 non-centromeric binding sites was not reported previously. Conclusion: We designed a multiplex short-read DNA sequencing method to perform efficient ChIP-Seq in yeast and other small genome model organisms. This method produces accurate results with higher throughput and reduced cost. Given constant improvements in high-throughput sequencing technologies, increasing multiplexing will be possible to further decrease costs per sample and to accelerate the completion of large consortium projects such as modENCODE.Keywords
This publication has 64 references indexed in Scilit:
- PeakSeq enables systematic scoring of ChIP-seq experiments relative to controlsNature Biotechnology, 2009
- A Sequence Motif within Chromatin Entry Sites Directs MSL Establishment on the Drosophila X ChromosomeCell, 2008
- High-throughput sequencing provides insights into genome variation and evolution in Salmonella TyphiNature Genetics, 2008
- Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem CellsCell, 2008
- Mapping and quantifying mammalian transcriptomes by RNA-SeqNature Methods, 2008
- Highly Integrated Single-Base Resolution Maps of the Epigenome in ArabidopsisCell, 2008
- Fus3‐triggered Tec1 degradation modulates mating transcriptional output during the pheromone responseMolecular Systems Biology, 2008
- Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencingNature Methods, 2007
- A Specialized Nucleosome Has a “Point” to MakeCell, 2007
- High-Resolution Profiling of Histone Methylations in the Human GenomePublished by Elsevier ,2007