Convergence to the coalescent in populations of substantially varying size

Abstract
Kingman's classical theory of the coalescent uncovered the basic pattern of genealogical trees of random samples of individuals in large but time-constant populations. Time is viewed as being discrete and is identified with non-overlapping generations. Reproduction can be very generally taken as exchangeable (meaning that the labelling of individuals in each generation carries no significance). Recent generalisations have dealt with population sizes exhibiting given deterministic or (minor) random fluctuations. We consider population sizes which constitute a stationary Markov chain, explicitly allowing large fluctuations in short times. Convergence of the genealogical tree, as population size tends to infinity, towards the (time-scaled) coalescent is proved under minimal conditions. As a result, we obtain a formula for effective population size, generalising the well-known harmonic mean expression for effective size.

This publication has 14 references indexed in Scilit: