The Distribution and Arrangement of Microtubules in Mammalian Skeletal Muscle Fibers.

Abstract
The distribution and arrangement of microtubules (MTs) in skeletal muscle fibers of the rat and mouse diaphragm were examined by thin-section electron microscopy. In the central portion of muscle fibers, most MTs ran longitudinally between myofibrils and beneath the sarcolemma, and some MTs ran transversely predominantly at the level of the I band, especially of the A-I junction, thus forming a lattice-like arrangement. At the fiber periphery, MTs were aggregated in the perinuclear region, from which they radiated to take a longitudinal course beneath the sarcolemma and to run in a transverse direction at the I-band level. In the end portion of muscle fibers, MTs were abundant and ran longitudinally into sarcoplasmic processes. MTs were often found to be spatially associated with membranous organelles. Quantitative analyses indicated that the longitudinally running MTs were remarkably more numerous in the peripheral zone of muscle fibers than in the deeper zones. The density of MTs in the central portion was almost the same in both red and white muscle fibers. The density was significantly higher at the fiber ends, though it varied considerably among different fibers. These results are discussed with special reference to the possible involvement of MTs in intracellular transport as well as structural support.

This publication has 0 references indexed in Scilit: