Using the Special Sensor Microwave/Imager to Monitor Land Surface Temperatures, Wetness, and Snow Cover
Open Access
- 1 September 1998
- journal article
- Published by American Meteorological Society in Journal of Applied Meteorology and Climatology
- Vol. 37 (9) , 888-911
- https://doi.org/10.1175/1520-0450(1998)037<0888:utssmi>2.0.co;2
Abstract
The worldwide network of in situ land surface temperatures archived in near-real time at the National Climatic Data Center (NCDC) has limited applications, since many areas are poorly represented or provide no observations. Satellite measurements offer a possible way to fill in the data voids and obtain a complete map of surface temperature over the entire globe. A method has been developed to calculate near-surface temperature using measurements from the Special Sensor Microwave/Imager (SSM/I). To accomplish this, the authors identify numerous surface types and make dynamic adjustments for variations in emissivity. Training datasets were used to define the relationship between the seven SSM/I channels and the near-surface temperature. For instance, liquid water on the surface reduces emissivity; therefore, the authors developed an adjustment to correct for this reduction. Other surface types (e.g., snow, ice, and deserts) as well as precipitation are identified, and numerous adjustments and/or f... Abstract The worldwide network of in situ land surface temperatures archived in near-real time at the National Climatic Data Center (NCDC) has limited applications, since many areas are poorly represented or provide no observations. Satellite measurements offer a possible way to fill in the data voids and obtain a complete map of surface temperature over the entire globe. A method has been developed to calculate near-surface temperature using measurements from the Special Sensor Microwave/Imager (SSM/I). To accomplish this, the authors identify numerous surface types and make dynamic adjustments for variations in emissivity. Training datasets were used to define the relationship between the seven SSM/I channels and the near-surface temperature. For instance, liquid water on the surface reduces emissivity; therefore, the authors developed an adjustment to correct for this reduction. Other surface types (e.g., snow, ice, and deserts) as well as precipitation are identified, and numerous adjustments and/or f...Keywords
This publication has 0 references indexed in Scilit: