A Method for Spatial Deconvolution of Spectra
Open Access
- 1 February 2000
- journal article
- research article
- Published by American Astronomical Society in The Astrophysical Journal
- Vol. 529 (2) , 1136-1144
- https://doi.org/10.1086/308291
Abstract
A method for spatial deconvolution of spectra is presented. It follows the same fundamental principles as the "MCS image deconvolution algorithm" recently developed by Magain, Courbin, & Sohy and uses information contained in the spectrum of a reference point-spread function to spatially deconvolve spectra of very blended sources. An improved resolution rather than an infinite one is aimed at, overcoming the well-known problem of "deconvolution artifacts." As in the MCS algorithm, the data are decomposed into a sum of analytical point sources and a numerically deconvolved background so that the spectrum of extended sources in the immediate vicinity of bright point sources may be accurately extracted and sharpened. The algorithm has been tested on simulated data including seeing variation as a function of wavelength and atmospheric refraction. It is shown that the spectra of severely blended point sources can be resolved while fully preserving the spectrophotometric properties of the data. Extended objects "hidden" by bright point sources (up to 4-5 mag brighter) can be accurately recovered as well, provided the data have a sufficiently high total signal-to-noise ratio (200-300 per spectral resolution element). Such spectra are relatively easy to obtain, even down to faint magnitudes, within a few hours of integration time with 10 m class telescopes.Keywords
All Related Versions
This publication has 6 references indexed in Scilit:
- High-Resolution Optical and Near-Infrared Imaging of the Quadruple Quasar RX J0911.4+0551The Astrophysical Journal, 1998
- Image Deconvolution of the Radio Ring PKS 1830−211The Astrophysical Journal, 1998
- Deconvolution with Correct SamplingThe Astrophysical Journal, 1998
- Maximum entropy image reconstruction: general algorithmMonthly Notices of the Royal Astronomical Society, 1984
- An iterative technique for the rectification of observed distributionsThe Astronomical Journal, 1974
- Bayesian-Based Iterative Method of Image Restoration*Journal of the Optical Society of America, 1972