Bifurcation Theory and the Type Numbers of Marston Morse
Open Access
- 1 July 1972
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 69 (7) , 1737-1738
- https://doi.org/10.1073/pnas.69.7.1737
Abstract
Let H be a real Hilbert space and f(x,λ) be a C2 operator mapping a small neighborhood U of (x0,λ0) ε (H × R1) into itself. We investigate the solutions of the equation f(x,λ) = 0 near a solution (x0,λ0), assuming that f(x,λ) is a gradient mapping and 0 < dim Ker fx(x0,λ0) < ∞. In particular, we show that the type numbers of Marston Morse for an isolated critical point can be used to prove the existence of a point of bifurcation at (x0,λ0). An application of this result is given to the discovery of periodic motions near a stationary point for a large class of nonlinear Hamiltonian systems in “resonant” cases.Keywords
This publication has 0 references indexed in Scilit: