Robust stepwise regression

Abstract
The selection of an appropriate subset of explanatory variables to use in a linear regression model is an important aspect of a statistical analysis. Classical stepwise regression is often used with this aim but it could be invalidated by a few outlying observations. In this paper, we introduce a robust F-test and a robust stepwise regression procedure based on weighted likelihood in order to achieve robustness against the presence of outliers. The introduced methodology is asymptotically equivalent to the classical one when no contamination is present. Some examples and simulation are presented.
Keywords

This publication has 13 references indexed in Scilit: