Effects of the South Asian Absorbing Haze on the Northeast Monsoon and Surface–Air Heat Exchange
Open Access
- 1 September 2002
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 15 (17) , 2462-2476
- https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2
Abstract
The effects of the south Asian haze on the regional climate are assessed using the National Center for Atmospheric Research Community Climate Model version 3 (CCM3) at the T42/L18 resolution. This haze, as documented during the Indian Ocean Experiment (INDOEX) campaign (1995–2000), consists mainly of anthropogenic aerosols, and spans over most of south Asia and the north Indian Ocean. It reduces the net solar flux at the surface by as much as 20–40 W m−2 on a monthly mean basis and heats the lowest 3-km atmosphere by as much as 0.4–0.8 K day−1, which enhances the solar heating of this layer by 50%–100%. This widespread haze layer is a seasonal phenomenon limited to the dry period between November and May. The imposed haze radiative forcing leads to several large and statistically significant climate changes during the dry monsoon season, which include cooling of the land surface, and warming of the atmosphere. These temperature change features lead to the stabilization of the boundary layer that ... Abstract The effects of the south Asian haze on the regional climate are assessed using the National Center for Atmospheric Research Community Climate Model version 3 (CCM3) at the T42/L18 resolution. This haze, as documented during the Indian Ocean Experiment (INDOEX) campaign (1995–2000), consists mainly of anthropogenic aerosols, and spans over most of south Asia and the north Indian Ocean. It reduces the net solar flux at the surface by as much as 20–40 W m−2 on a monthly mean basis and heats the lowest 3-km atmosphere by as much as 0.4–0.8 K day−1, which enhances the solar heating of this layer by 50%–100%. This widespread haze layer is a seasonal phenomenon limited to the dry period between November and May. The imposed haze radiative forcing leads to several large and statistically significant climate changes during the dry monsoon season, which include cooling of the land surface, and warming of the atmosphere. These temperature change features lead to the stabilization of the boundary layer that ...Keywords
This publication has 17 references indexed in Scilit:
- A modeling study of the direct effect of aerosols over the tropical Indian OceanJournal of Geophysical Research: Atmospheres, 2001
- ENSO Diabatic Heating in ECMWF and NCEP–NCAR Reanalyses, and NCAR CCM3 SimulationJournal of Climate, 2000
- Indian Ocean SST and Indian Summer Rainfall: Predictive Relationships and Their Decadal VariabilityJournal of Climate, 2000
- Warming of the World OceanScience, 2000
- Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January‐February 1996 pre‐INDOEX cruiseJournal of Geophysical Research: Atmospheres, 1998
- Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrationsGeophysical Research Letters, 1997
- The NCEP/NCAR 40-Year Reanalysis ProjectBulletin of the American Meteorological Society, 1996
- Diagnosis of the Surface Momentum Balance over the Tropical Pacific OceanJournal of Climate, 1993
- On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the TropicsJournal of the Atmospheric Sciences, 1987
- Some simple solutions for heat‐induced tropical circulationQuarterly Journal of the Royal Meteorological Society, 1980