Large scale production of recombinant mouse and rat growth hormone by fed-batch GS-NSO cell cultures
- 1 January 1996
- journal article
- Published by Springer Nature in Cytotechnology
- Vol. 22 (1) , 239-250
- https://doi.org/10.1007/bf00353944
Abstract
Investigations of biological effects of prolonged elevation of growth hormone in animals such as mice and rats require large amounts of mouse and rat growth hormone (GH) materials. As an alternative to scarce and expensive pituitary derived materials, both mouse and rat GH were expressed in NSO murine myeloma cells transfected with a vector containing the glutamine synthetase (GS) gene and two copies of mouse or rat GH cDNA. For optimal expression, the mouse GH vector also contained sequences for targeting integration by homologous recombination. Fed-batch culture processes for such clones were developed using a serum-free, glutamine-free medium and scaled up to 250 L production scale reactors. Concentrated solutions of proteins, amino acids and glucose were fed periodically to extend cell growth and culture lifetime, which led to an increase in the maximum viable cell concentration to 3.5×109 cells/L and an up to 10 fold increase in final mouse and rat rGH titers in comparison with batch cultures. For successful scale up, similar culture environmental conditions were maintained at different scales, and specific issues in large scale reactors such as balancing oxygen supply and carbon dioxide removal, were addressed. Very similar cell growth and protein productivity were obtained in the fed-batch cultures at different scales and in different production runs. The final mouse and rat rGH titers were approximately 580 and 240 mg/L, respectively. During fed-batch cultures, the cell growth stage transition was accompanied by a change in cellular metabolism. The specific glucose consumption rate decreased significantly after the transition from the growth to stationary stage, while lactate was produced in the exponential growth stage and became consumed in the stationary stage. This was roughly coincident with the beginning of ammonia and glutamate accumulation at the entry of cells into the stationary stage as the result of a reduced glutamine consumption and periodic nutrient additions.Keywords
This publication has 9 references indexed in Scilit:
- High viable cell concentration fed‐batch cultures of hybridoma cells through on‐line nutrient feedingBiotechnology & Bioengineering, 1995
- Evaluation and applications of optical cell density probes in mammalian cell bioreactorsBiotechnology & Bioengineering, 1995
- In Pursuit of the Optimal Fed‐Batch Process for Monoclonal Antibody ProductionBiotechnology Progress, 1995
- On‐line characterization of a hybridoma cell culture processBiotechnology & Bioengineering, 1994
- Applications of improved stoichiometric model in medium design and fed-batch cultivation of animal cells in bioreactorCytotechnology, 1994
- Monoclonal Antibody Process Development Using Medium ConcentratesBiotechnology Progress, 1994
- A Nonpeptidyl Growth Hormone SecretagogueScience, 1993
- Nucleotide sequence of mouse prolactin and growth hormone mRNAs and expression of these mRNAs during pregnancy.Journal of Biological Chemistry, 1985
- DNA sequence of the rat growth hormone gene: location of the 5′ terminus of the growth hormone mRNA and identification of an internal transposon-like elementNucleic Acids Research, 1981