Abstract
Steroid hormones, thyroid hormones, retinoic acids, and vitamin D bind to their receptors, which are now called steroid/nuclear receptors, and liganded receptors translocate either intracellularly or intranuclearly and form large protein complexes with cofactors to induce or repress gene transcription. Therefore, steroid/nuclear receptors are ligand-dependent transcription factors. With the advent of green fluorescent protein (GFP) and its color variants, the subcellular distribution of many steroid/nuclear receptors has been found to be much more dynamic than previously thought, with some of the receptors shuttling between the cytoplasm and nucleus. Steroid/nuclear receptors can be divided into three categories based on their unliganded distribution: those that are primarily in the nucleus, those in the cytoplasm, and those with mixed cytoplasmic and nuclear distributions. However, in all cases, the addition of a ligand leads to almost complete nuclear translocation of the receptors. Hormonal stimulation induces intranuclear receptor distribution from a homogeneous pattern to a heterogeneous dot-like image. Ligand binding to steroid/nuclear receptors leads to the recruitment of many proteins including cofactors to provoke the redistribution of receptor complexes in the nucleus. This focal organization could involve more complex events than simple DNA binding sites for transcription. Protein activities and interactions of steroid/nuclear receptors can be imaged and localized in a single cell.