Further Aspects of the Theory of the Maser
- 1 June 1956
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 102 (5) , 1308-1321
- https://doi.org/10.1103/physrev.102.1308
Abstract
The theory of the molecular transitions which are induced by the microwave field in a maser and the effects of various design parameters are examined in detail. It is shown that the theoretical minimum detectable beam intensity when the maser is used as a spectrometer for the 3-3 line of ammonia is about molecules/sec under typical experimental conditions. Various systematic frequency shifts and random frequency fluctuations of the maser oscillator are discussed and evaluated. The most prominent of the former are the "frequency-pulling" effect, which arises from detuning of the cavity, and the Doppler shift due to the asymmetrical coupling of the beam with the two traveling wave components of the standing waves which are set up in the cavity. These two effects may produce fractional shifts as large as one part in . If adequate precautions are taken, however, they can be reduced to one part in or possibly less. The random fluctuations are shown to be of the order of one part in under typical operating conditions. For molecular beams in which the electric-dipole transition is used, the mode is usually the most suitable for the maser; while in atomic beams in which magnetic transitions are utilized, the mode is to be preferred.
Keywords
This publication has 10 references indexed in Scilit:
- New Method for the Observation of Hyperfine Structure of NH3 in a ``Maser'' OscillatorReview of Scientific Instruments, 1955
- Hyperfine Structure in the Inversion Spectrum ofby a New High-Resolution Microwave SpectrometerPhysical Review B, 1955
- The Maser—New Type of Microwave Amplifier, Frequency Standard, and SpectrometerPhysical Review B, 1955
- The theory of a molecular oscillator and a molecular power amplifierDiscussions of the Faraday Society, 1955
- The Stark Effect of the Ammonia Inversion SpectrumPhysical Review B, 1951
- Microwave Collision Diameters I. ExperimentalPhysical Review B, 1950
- Inversion Frequency of Ammonia and Molecular InteractionPhysical Review B, 1949
- Limiting Sensitivity of a Microwave SpectrometerJournal of Applied Physics, 1948
- The Hyperfine Structure and the Stark Effect of the Ammonia Inversion SpectrumPhysical Review B, 1947
- Microwave ElectronicsReviews of Modern Physics, 1946