Novel nanocomposites from spider silk–silica fusion (chimeric) proteins
- 20 June 2006
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (25) , 9428-9433
- https://doi.org/10.1073/pnas.0601096103
Abstract
Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5–10 μm in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5–2 μm in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials.This publication has 45 references indexed in Scilit:
- Low folate status increases chromosomal damage by X-ray irradiationInternational Journal of Radiation Biology, 2006
- Quantum dot bioconjugates for imaging, labelling and sensingNature Materials, 2005
- Developmental biology meets materials science: Morphogenesis of biomineralized structuresDevelopmental Biology, 2005
- Viral templates for gold nanoparticle synthesisJournal of Materials Chemistry, 2004
- Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroinPublished by Elsevier ,2004
- Nanotechnology and biomimetics with 2-D protein crystalsIEEE Engineering in Medicine and Biology Magazine, 2003
- Dynamic Addressing of a Surface Pattern by a Stimuli‐Responsive Fusion ProteinAdvanced Materials, 2003
- Production and Characterization of Fusion Proteins Containing Transferrin and Nerve Growth FactorJournal of Drug Targeting, 1998
- The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen IsothermsJournal of the American Chemical Society, 1951
- Adsorption of Gases in Multimolecular LayersJournal of the American Chemical Society, 1938