Tropospheric Water Vapor and Climate Sensitivity

Abstract
Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO2), using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO2 is found as the difference between the equilibrium responses for control and doubled CO2 cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO2 from water vapor above 750 mb is about 2.6 times a... Abstract Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO2), using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO2 is found as the difference between the equilibrium responses for control and doubled CO2 cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO2 from water vapor above 750 mb is about 2.6 times a...

This publication has 0 references indexed in Scilit: