Movement Time to an Array of Controls

Abstract
Two tasks in which subjects aim at an array of devices were considered: moving to one knob within an array and moving the finger on a numeric keypad. It was shown by a mathematical model based on Fitts' law, that when the array density is specified for the array of knobs or keys, there is an optimum control size for minimum movement time. The theoretical result was obtained by considering a two-element model of the movement, the first being a reach to the general location of the control and the second describing the insertion of the fingers into the space between adjacent controls. As the first element has a movement time that decreases with increase of control size and the second a time increasing with control size, there is an optimum control size where the movement time is a minimum.

This publication has 9 references indexed in Scilit: