J−matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering
- 1 February 1975
- journal article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 16 (2) , 410-420
- https://doi.org/10.1063/1.522516
Abstract
The J−matrix method introduced previously for s−wave scattering is extended to treat the lth partial wave kinetic energy and Coulomb Hamiltonians within the context of square integrable (L2), Laguerre (Slater), and oscillator (Gaussian) basis sets. The determination of the expansion coefficients of the continuum eigenfunctions in terms of the L2 basis set is shown to be equivalent to the solution of a linear second order differential equation with appropriate boundary conditions, and complete solutions are presented. Physical scattering problems are approximated by a well−defined model which is then solved exactly. In this manner, the generalization presented here treats the scattering of particles by neutral and charged systems. The appropriate formalism for treating many channel problems where target states of differing angular momentum are coupled is spelled out in detail. The method involves the evaluation of only L2 matrix elements and finite matrix operations, yielding elastic and inelastic scattering information over a continuous range of energies.Keywords
This publication has 4 references indexed in Scilit:
- Newapproach to quantum scattering: TheoryPhysical Review A, 1974
- -matrix method: Application toS-wave electron-hydrogen scatteringPhysical Review A, 1974
- Expansion Approach to ScatteringPhysical Review Letters, 1967
- Upper and Lower Bounds of Scattering PhasesProgress of Theoretical Physics, 1951