On the exponential flattening of current sheets near neutral X-points in two-dimensional ideal MHD flow

Abstract
It is shown that the flattening of current sheets which has been observed near neutral X-points in numerical simulations of ideal MHD flow in two dimensions can be obtained from an asymptotic expansion of the dynamical equations. This asymptotic expansion suggests that exponential self-similar flattening proceeds forever and that there is no finite time singularity for ideal two-dimensional MHD flows. The equation for the spatial structure of the self-similar solution is reduced, via a hodograph transformation, to a nonlinear wave equation involving interactions with distant parts of the fluid and therefore non-universal features.

This publication has 15 references indexed in Scilit: