Bond equilibrium theory for Te-rich liquid Tl–Te alloys
- 1 June 1977
- journal article
- Published by Canadian Science Publishing in Canadian Journal of Chemistry
- Vol. 55 (11) , 1930-1936
- https://doi.org/10.1139/v77-269
Abstract
Recent work has provided independent information about the behavior of the hole concentration c in TlxTe1−x as a function of temperature T and composition x in the range 0.2 ≤ x ≤ 0.6. This makes possible a critical reexamination of a molecular bond model for the structure of the alloy, in which holes are generated by broken Te—Te bonds. The earlier theory is revised to formulate an unrestricted independent bond model (ibm), for which the equations are simple and have obvious physical interpretations. This provides a good description of c(T) but only a qualitatively correct c(x). Using a Thomas–Fermi model for the screening interaction between holes and the acceptor ions, it is shown that the equilibrium constant can be expected to increase rapidly with c at large enough values. A modification in which the free energy of a dangling bond is decreased by proximity to a Tl—Te bond is found to significantly improve the result for c(x). The thermochemical behavior is derived. The entropy of mixing is in fair agreement with experiment, but the enthalpy of mixing is grossly wrong. This reflects the neglect of intermolecular interactions in the theory, which, it seems, can easily account for the remaining discrepancies in the predicted behavior of c.Keywords
This publication has 0 references indexed in Scilit: