Increase in the rate of recombinants in tomato (Lycopersicon esculentum L.) after in vitro regeneration

Abstract
Modification to the cross-over (C. O.) rate of tomato (Lycopersicon esculentum) was attempted by using in vitro plant regeneration. F1 hybrids with the same genetical homozygous background were compared at two loci: “bs-ms32” on chromosome I, and “aa-d” on chromosome II. For each, the genetic distance separating the two markers was about 20 to 30 map units. One cotyledon of each F2 hybrid seedling was used as in vitro tissue culture material, while the rest of the plantlet was grown as a control. Recombination rates of the selfed progenies from each regenerated and matched control couple were compared. For the first set of markers 59,000 seeds were analysed (5 controls' and 7 regenerated progenies), and for the second, 11,000 (5 controls' and 8 regenerated progenies). There were significant increases in the genetic distance between markers in about half the regenerated individuals. For the first set the increases ranged from 6.07 to 6.91 units out of a control distance of the 19.84 to 25.65, corresponding to lengthenings of 30.59 to 35.29%. For the second set they ranged from 4.92 to 6.04 out of a control distance of 25.05 to 26.57, representing increases of 19.64 to 22.75%. Such a phenomenon can be important either from a fundamental or practical viewpoint, regarding selection efficiency in plants, and potential for gene reassortment.