A biochemical and immuno-electron microscopical analysis of chondroitin sulphate-rich proteoglycans in human alveolar bone

Abstract
This study used biochemical and immunohistochemical methods to characterize the chondroitin sulphate-rich proteoglycans from human alveolar bone obtained from an oral source. Proteoglycans were extracted from bone by a sequential 4 m guanidine HCl extraction process, and purified by DEAE-ion exchange chromatography. SDS-PAGE and Western blot analysis, using CS-56 monoclonal antibody, demonstrated one major proteoglycan species with a core protein of 58 kDa, glycosaminoglycan chains of 45--66 kDa and a mean molecular weight of 205 kDa. This work confirmed the biochemistry of chondroitin sulphate-rich proteoglycans from a novel source of adult human alveolar bone, and pointed towards a proteoglycan with a high glutamate, glycine, aspartate, alanine, serine and leucine content. Sections of alveolar bone were embedded in LR White resin, labelled with CS-56 antibody and examined with the light and electron microscopes. At the light microscope level, labelling was restricted to the osteocyte lacunae and canaliculi. Ultrastructural observations showed that the labelling was localized to fine filamentous material in the walls of the osteocytes and canaliculi. Sparse labelling was associated with the collagen fibres immediately subjacent to the lamina limitans, but no labelling of the mineralized matrix was observed. These findings also indicated subtle differences in the distribution of chondroitin sulphate compared with previously reported work, which may indicate species or age differences in the samples used in this study. Ultrastructural analysis confirmed and extended observations of glycosaminoglycan localization at the osteocyte cell membrane of mature human alveolar bone