Electrical responses to amputation of the eye in the mystery snail

Abstract
Immediately following amputation through the eyestalk of the mystery snail (Pomacea), a persistent ionic current enters the apical amputation surface of the eyestalk stump. The circuit is completed by current driven from undamaged integument of the eyestalk stump and other body regions. The current is relatively steady during the first 10 hours following amputation. Currents subsequently begin a slow decline to base line levels by 60 hours postamputation—a time coincident with wound healing processes. The “battery” driving this ionic current is the internally negative transepidermal potential existing across the snail integument—perhaps the result of a net inward pumping of chloride across the skin. This system is compared to other regeneration models such as the amphibian limb, bone fracture repair, and skin wound healing. We suggest that ionic current may be a control of eye regeneration in the snail.